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РУБРИКА: ⁠БУРЕНИЕ И ЗАКАНЧИВАНИЕ СКВАЖИН
Разработка верифицируемой методики оценки риска прихвата сиспользованием LSTM-автоэнкодера и анализа отклонений T&D
А. А. Фатьянов (ООО «ТетраСофт-Сервис»), Э. М. Джумаев(ООО «ТетраСофт-Сервис»), Д. Ю. Свечников (ООО «ТетраСофт»)
Прихват бурильной колонны остается одним из ключевых источниковпростоев и финансовых потерь при бурении. В статье представленаулучшенная, верифицируемая и интерпретируемая методика оценки ипрогнозирования риска прихвата (Stuck Risk) на основе комбинированногоподхода: сопоставление фактических сигналов с расчетными кривымиTorque & Drag и гидравлики, нормализованные метрики отклонения (DEV)и скорости изменения (ROC), а также модуль вторичной детекциианомалий на базе LSTM-автоэнкодера. Основное внимание уделенообоснованию методики, ее формальной постановке, практике калибровкипорогов и демонстрации на реальных данных. Работа служит переходнымзвеном между инженерной практикой T&D и современными методамимашинного обучения, сохраняя при этом интерпретируемостьрезультатов, необходимую операторам буровой.
Ключевые слова: прихват труб, Torque & Drag, предиктивная аналитика,LSTM-автоэнкодер, WITSML, DEV, ROC, риск-индекс.
Development of a verifiable methodology for stuck-pipe risk assessmentusing an LSTM autoencoder and T&D deviation analysis
A. Fatyanov (“TetraSoft-Service” LLC), E. M. Dzhumaev (“TetraSoft-Service”LLC), D. Y. Svechnikov (“TetraSoft-Service” LLC)
Drillstring sticking incidents represent a critical source of non-productive time(NPT) and economic losses in drilling operations. This study presents a refined,verifiable, and interpretable framework for stuck pipe risk assessment andprediction employing a hybrid methodology: benchmarking of real-timedownhole measurements against computed Torque & Drag and hydraulicsmodels, normalized deviation (DEV) and rate-of-change (ROC) metrics,coupled with a secondary anomaly detection layer utilizing LSTM autoencoderarchitecture. The paper focuses on methodological validation, mathematicalformulation, threshold calibration procedures, and field data case studies. Thisresearch bridges the gap between conventional T&D engineering practices andcontemporary machine learning techniques while preserving the interpretabilityrequired by drilling personnel for operational decision-making.
Keywords: drillstring sticking, stuck pipe incidents, Torque & Drag modeling,predictive analytics, LSTM autoencoder, WITSML telemetry, deviation metrics,rate-of-change analysis, risk index.
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1. Введение
Прихват бурильной колонны (stuck pipe) — мультифакторная проблема,приводящая к значительным потерям времени и средств. Несмотря наразвитие симуляторов Torque & Drag (T&D) и систем мониторинга,своевременная автоматическая идентификация предвестников прихватаостается актуальной задачей. Традиционные инженерные методы даютинтерпретируемые прогнозы, но чувствительны к ошибкам во входныхмоделях; чисто статистические и ML-подходы демонстрируют высокуючувствительность на больших наборах данных, но их интерпретируемостьи переносимость между площадками ограничена. В предлагаемомгибридном подходе мы объединяем сильные стороны обоих направлений:физически обоснованные прогнозы T&D и гидравлики, нормализованныеиндикаторы DEV/ROC с адаптивными порогами и LSTM-автоэнкодервторого уровня для выявления нетипичных паттернов, не захваченныхпервым уровнем [1].
2. Краткий обзор литературы
Современные исследования по прогнозированию прихватов можноусловно разделить на три класса: физические модели T&D и гидравлики,статистические/многомерные методы и методы машинного обучения(включая глубокие сети для временных рядов). Недавние обзоры ипрактические кейсы демонстрируют эффективность гибридных схем,сочетающих физические расчеты и алгоритмы обнаружения аномалий [2].Параллельно развивается практика стандартизованного обмена данными(WITSML), что позволяет интегрировать расчетные кривые и инженерныемодели в систему реального времени и предиктивной аналитики.
3. Данные и требования к сбору
3.1. Необходимые данные
Параметры:

 крутящий момент (Torque);
 вес на крюке (Hook Load);
 давление в нагнетательной линии (Pump Pressure);
 обороты ротора (RPM);
 расход бурового раствора (Flow Rate);
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 положение долота (Bit Depth).
Частота:

 минимум 1 точка в 10 секунд (0,1 Гц);
 оптимально 1 точка в 1 секунду (1 Гц) для повышения точности.

Объем данных:
 хранение данных за последние 300 секунд для расчетов в реальномвремени;
 долгосрочные данные сохраняются в базе данных для анализатрендов и обучения модели.

Источник данных:
 G-BOX/WITSML-сервер: данные в реальном времени c буровыхдатчиков [3].

Датчики на буровой:
 наземные датчики (давление, скорость вращения, расход);
 датчик нагрузки (вес на крюке и нагрузка на долото);
 исторические данные: из предыдущих скважин для калибровки иобучения алгоритмов.

3.2. Источник прогнозных значений
В схеме все прогнозные кривые (модельные значения) не генерируютсявнутри кода, а готовятся заранее в инженерном ПО и импортируются всистему до запуска алгоритма.
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Таблица 1. Перечень необходимых данных и их источники
Перечень прогнозных (расчетных) параметров

Параметр Описание
𝑥HL

pred Расчетное значение Hook Load (T&D)
𝑥TQ

pred
Расчетный Torque (T&D)

𝑥SPP
pred Расчетное давление (гидравлика)

𝑥ECD
pred

(опционально)
Расчетное ECD (при наличии MWD)

4. Процесс подготовки и импорта
4.1. Моделирование в инженерном ПО

 Torque & Drag (модуль расчета нагрузок T&D в Schlumberger DOX,Landmark WellPlan, Baker Hughes Advantage engineering и т. п.) —экспорт значений HLpred(𝑧), TQpred(𝑧).
 Гидравлика (Hydraulics module) — экспорт SPPpred(𝑧).
 (При наличии) расчет ECD через MWD/PWD Sensor — экспортзначений ECDpred(𝑧).

4.2. Экспорт
 Формат CSV/Excel с колонками.
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Рисунок 1. Структура входных данных
5. Математическая модель и методика оценки рисков
5.1. Отклонения от модели
Реальные данные, полученные с датчиков в реальном времени,сравниваются с рассчитанными моделями гидравлики и крутящегомомента (Torque & Drag).
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Алгоритм анализа отклонений
1. Для каждого параметра (например, крутящий момент или давление)рассчитывается разница между реальными и прогнозируемымизначениями.
2. Отклонение выражается в процентах:

Deviation(%) = (
𝑥actual−𝑥predicted

𝑥predicted ) × 100.
3. Каждое отклонение анализируется на предмет превышениядопустимого порога, который определяется для каждого параметра итипа операции.
Пример
Если давление отклоняется более, чем на 10 % от прогнозируемогозначения, это может указывать на зашламованность.
Алгоритм расчета:
1. Для каждого параметра вычисляется скорость изменения (Rate ofChange, ROC):

Rate of Change(%) =
𝑥avg𝑏

−𝑥avg𝑎
𝑥avg𝑎

× 100.
2. Рассчитывается скользящее среднее значения ROC за заданныйвременной интервал (например, 300 секунд).
3. Если ROC превышает заданный порог, формируется предупреждение.
Rate of Change (ROC) обнаруживает потенциальные проблемы, фиксируярезкие изменения ключевых параметров без необходимости сравнения сожидаемыми значениям. Преимущество метода в том, что он решаетпроблему, когда отклонение от модели слишком мало для срабатыванияаларма из-за усреднения или сглаживания данных, и позволяет выявлятьухудшающиеся условия в скважине, даже если отклонения от моделикажутся незначительными. Используется для быстрого выявления резкихизменений, которые могут быть пропущены при анализе «план/факт», приэтом направление изменения (положительное или отрицательное)зависит от типа активности на буровой и отслеживаемого параметра.
Пример
Быстрый рост крутящего момента при бурении может указывать на росткоэффициентов трения и риск прихвата.
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Нормализация и присвоение уровня оповещения (Alert Level)
В отсутствие датчиков для измерения эквивалентной циркуляционнойплотности (ECD) в реальном времени используются следующиепараметры для расчета (Stuck Risk):

a) отклонение крутящего момента от модели,
b) отклонение веса на крюке от модели,
c) отклонение давления от модели,
d) скорость изменения крутящего момента,
e) скорость изменения веса на крюке,
f) скорость изменения давления.

5.2. Принципы формирования
Для каждого контролируемого параметра определяется уровень риска(Alert Level) исходя из степени отклонения или динамики изменения.Уровни могут принимать несколько градаций:

 0 — параметр в пределах нормы;
 1 — незначительное отклонение от базового значения;
 2–3 — выраженное отклонение, требующее внимания икорректирующих действий.

Расчет интегрального риска прихвата
Индивидуальные оценки параметров агрегируются в интегральныйпоказатель риска. Значения шкалы выражаются в относительныхпроцентах: чем выше итоговое значение, тем выше вероятностьосложнений. В практическом применении пороговые значения дляинтерпретации задаются оператором в зависимости от условийконкретного месторождения [4].
Интерпретация

 Риск < 35 %: нормальные условия.
 Риск 35–50 %: неоптимальные условия, требующие внимания.
 Риск > 50 %: высокая вероятность осложнений, необходимынемедленные действия.
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Таблица 2. Матрица порогов (Threshold Matrix) для различных операций
Threshold Matrix

Activity P1Deviation P2Deviation P3Deviation P1 Rate P2 Rate P3 Rate

RotaryDrill Set byML/AI oroperator
Set byML/AI oroperator

Set byML/AI oroperator
Set byML/AI oroperator

Set byML/AI oroperator
Set byML/AI oroperator

SlideDrill Set byML/AI oroperator
— Set byML/AI oroperator

Set byML/AI oroperator
— Set byML/AI oroperator

X
5.3. Адаптация математической модели
Для каждого контролируемого параметра задается пороговое значение.Пока данные находятся в пределах нормы, режим считается стабильным.При выходе за пределы порога параметр классифицируется кактребующий повышенного внимания.
Для оценки риска прихвата применяется мониторинг динамики ключевыхпараметров в режиме реального времени. Важно, чтобы обработкаданных выполнялась своевременно, что позволяет оперативно приниматьмеры при росте вероятности осложнений.
Система получает поток данных от буровой установки (например, черезстандартные протоколы обмена) и автоматически определяет типвыполняемой операции. Это обеспечивает корректное сопоставлениефактических данных с расчетными моделями гидравлики и нагрузок.
Далее для каждой точки вычисляются нормализованные показателиотклонения и скорости изменения, которые интегрируются в общую схемуоценки риска.
Сперва производится вычисление DEV относительно модели. Для каждойточки в выбранном интервале определяется, на сколько процентовфактические данные отличаются от расчетного значения. Инженерныерасчеты T&D и гидравлики формируются на этапе планированияскважины, однако в процессе строительства фактические данныепоступают с гораздо большей частотой, и многие замеры оказываются«между» расчетными точками. Для корректного сопоставления
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применяется интерполяция расчетных данных на заданный интервал, чтопозволяет получить прогнозные значения именно в тех точках, гдефиксируются фактические измерения. Это решение обеспечивает болееточное сравнение фактических и расчетных параметров [5].
Так как шаг между расчетными точками обычно невелик, достаточнолинейной интерполяции, которая не вносит значимых ошибок и позволяеткорректно определить прогнозное значение параметра для любойглубины на основе ближайших расчетных данных:

𝑥predicted = 𝑥1 + 𝑥2 − 𝑥1
𝑧2 − 𝑧1

𝑧actual,

𝑧1 < 𝑧actual < 𝑧2.
Процентное отклонение рассчитывается как относительная разницамежду фактическим и прогнозным значением. Такой расчет выполняетсядля каждой точки в выбранном интервале, после чего результатыусредняются. Итоговое значение сопоставляется с допустимымдиапазоном отклонений. Если оно находится в пределах нормы, системане формирует оповещения:

𝑋value % =
𝑥actual−𝑥predicted

𝑥predicted × 100.
Применение фиксированного порога имеет два ограничения:

 высокая чувствительность к самому значению порога — даженебольшое изменение приводит к другому результату(сработало / не сработало);
 отсутствие градации между незначительными и сильнымиотклонениями — все превышения учитываются одинаково, хотястепень риска различна.

Для устранения этих недостатков предлагается подход, в которомучитывается не только сам факт превышения порога, но и его величина,что позволяет более реалистично оценивать уровень риска.
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Таблица 3. Матрица ранжирования уровней оповещения
Normalized Deviation

Calculated Deviation vs. Reference Interpretation Alert Level
Within acceptable range Stable 0
Moderate deviation Attention required 1–2
Significant deviation High risk 3

Normalized Rate
Calculated Trend vs. Reference Interpretation Alert Level
Within acceptable rate Stable 0
Moderate change Attention required 1–2
Significant change High risk 3
В качестве примера можно рассмотреть ситуацию, когда фактическоеотклонение значительно превышает допустимое. Для вычисления уровняоповещения используется отношение величины отклонения кустановленному порогу. При этом значения искусственно ограничиваютсясверху фиксированным максимумом, чтобы исключить чрезмерноевлияние единичных аномальных данных.
После расчета индикатора для одного параметра аналогичный алгоритмприменяется и к другим ключевым параметрам (нагрузка на крюк,давление циркуляции и др.). Итоговый суммарный показательформируется как агрегированная оценка по всем параметрам [7].
Анализ скорости изменения (Rate) реализуется через сравнениескользящих средних в соседних интервалах данных. Такой подходпозволяет выявлять не только факт отклонения, но и его динамику, чтоповышает чувствительность системы к ранним признакам осложнений:

𝑁𝑅(%) = MVG AVGWindow 2−MVG AVGWindow 1MVG AVGWindow 1 × 100.
Тот же принцип вычисления Alert применяется и для показателя скоростиизменения (Rate), хотя пороговые значения для него задаются отдельно.
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При объединении компонентов Normalized Deviation и Normalized Rateформируется совокупная шкала, до 100 процентов. Заключительный шагметодики заключается в сопоставлении фактического уровня отклоненияс максимально возможным, что позволяет получить итоговую оценку рискаприхвата (Stuck Risk) [8]:
Stuck Pipe Risk = Sum of all Alert Levels

Maximum Alert Level × 100.
Таблица 4. Таблица выбора окна данных для различных типов операций

Table of Data Window Selection for Main Types of Activities

RigActivity Normalized Deviation Normalized Rate

Slide Drill [Deviation_Window 2] [MVG AVG_Window 2] - [MVGAVG_Window 1] / [MVG AVG_Window 1]
RotaryDrill [Deviation_Window 2] [MVG AVG_Window 2] - [MVGAVG_Window 1] / [MVG AVG_Window 1]
Ream In [Deviation_Window 2] [MVG AVG_Window 2] - [MVGAVG_Window 1] / [MVG AVG_Window 1]
BackReam [Deviation_Window 3] [MVG AVG_Window 4] - [MVGAVG_Window 3] / [MVG AVG_Window 3]
Trip In [Deviation_Window 2] [MVG AVG_Window 2] - [MVGAVG_Window 1] / [MVG AVG_Window 1]
Trip Out [Deviation_Window 3] [MVG AVG_Window 4] - [MVGAVG_Window 3] / [MVG AVG_Window 3]
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Таблица 5. Размеры и структура окон
Structure and Size of Windows

NormalizedDeviation Множитель
𝒏

Радиус
𝑹 = 𝒏 ⋅ 𝑹𝐛𝐚𝐬𝐞,

точек

Длина
𝟐𝑹 + 𝟏,точек

В секундах(при 1 Гц)

Deviation_Window_1 x1 5𝑛 11 11 с
Deviation_Window_2 x2 10𝑛 21 21 с
Deviation_Window_3 x3 15𝑛 31 31 с
Deviation_Window_4 x4 20𝑛 41 41 с
Примечание: здесь 𝑅base = 5 точек выбрано для примера.
Далее описаны основные изменения.
5.4. Непрерывное обновление прогнозных значений
Платформа RigSpace Monitoring будет получать актуальные данные отLandmark WELLPLAN [9], включая расчетные значения гидравлики, T&D иECD, а также дополнительные данные от MWD [6].

 Это важно, так как устраняет необходимость заранее строитьмодели гидравлики и T&D для каждой операции. Вместо этогопрогноз параметров будет создаваться непрерывно на основеданных в реальном времени.
 Также это было критическим изменением, так как больше нетребовалось строить гидравлические и T&D модели для каждойоперации перед началом бурения. Вместо этого для каждогопараметра создается непрерывный прогноз, основанный навремени.

Использование этого метода позволяет работать не только с данными,привязанными к глубине, но и с данными, привязанными ко времени,теперь расчет Rate и пороговых значений выполняется не только поглубине, но и по времени:
Rate threshold % = % change in parameter

Depth = % change in parameter
Bit Velocity×time ,

где Bit Velocity — скорость подачи бурового инструмента.
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Эта формула позволяет учитывать изменения глубины за определенныйпромежуток времени и применять адаптированные пороговые значения вреальном времени.
Добавление параметра ROP к процентному изменению параметра вовремени позволило использовать те же пороговые значения, которыеранее были экспериментально подтверждены для расчетов на основеглубины. Это дало возможность эффективно переводить пороговыезначения из глубинного домена во временной.
Для повышения точности расчетов ROC дополнительно предлагаетсяучитывать изменения RPM (скорости вращения) или Flowrate (скоростипотока). Было замечено, что увеличение скорости потока с 32 до 40 л/сприводило к резкому увеличению Rate (SPP), что могло быть ошибочноинтерпретировано системой как рост риска прихвата.
Таким образом, если входной параметр увеличивается (например, с 32 л/сдо 40 л/с), коэффициент временно становится больше 1. Это увеличиваетпорог ROC на определенное время, чтобы расчет риска прихвата нереагировал на изменения входных параметров.
Отклонение от прогнозной модели
Для каждой точки 𝑖∈[𝑅 + 1,…,𝑛 − 𝑅]вычисляем среднее в окне исравниваем с фактом:

𝑑 𝑖 = 1
2𝑅 + 1

𝑖+𝑅

𝑗=𝑖−𝑅
 𝑑𝑗,

DEV𝑖 = 𝑑 𝑖−𝑑𝑖
𝑑𝑖

× 100%.
Итоговый риск прихвата (Pipe-Sticking Risk):

X𝑖 =
∑

𝑝∈{𝑥,𝑧,𝑦}
(Alert𝑝,𝑉,𝑖+Alert𝑝,𝑍,𝑖)

SumAlert × 100%.
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Рисунок 2. Итоговый риск прихвата (крайний слева)
5.5. Анализ инцидентов и расчеты риска
Для проверки работы алгоритма использовались реальные данные,полученные со скважины XXXXXX за период с 07.01.2025 00:00 до07.01.2025 01:00.
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Рисунок 3. График исходных данных (вес на крюке)

Рисунок 4. График исходных данных (давление)
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Рисунок 5. График исходных данных (крутящий момент)
Анализ графиков с реальными сырыми данными (Hook Load, StandpipePressure, Torque) за выбранный временной интервал для демонстрацииисходных параметров до применения алгоритма
На графиках наблюдаются значения параметров, соответствующиебурению по режимно-технологической карте. Отклонений от нормальногорежима не выявлено. В правой части графиков видно изменениепараметров, связанное со сменой технологического этапа. Этот участокбудет использован для проверки работы алгоритма на выявлениевозможных осложнений.
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Рисунок 6. График изменение метрики DEV для веса на крюке

Рисунок 7. График изменения метрики ROC для веса на крюке
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Рисунок 8. График изменения метрики DEV для давления

Рисунок 9. График изменения метрики ROC для давления
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Рисунок 10. График изменения метрики DEV для крутящего момента

Рисунок 11. График изменения метрики ROC для крутящего момента
На представленных графиках наблюдается ряд пиковых значений,которые коррелируют по трем отслеживаемым параметрам: Hook Load,Standpipe Pressure и Torque. Эти пики указывают на рост осевых иторсионных нагрузок в процессе бурения. Подобное поведение можетсвидетельствовать о начале проблем со скважиной, таких как увеличениетрения или возможное зашламовывание ствола. Дальнейший анализпозволит подтвердить наличие риска прихвата и оценить эффективностьприменяемого алгоритма для своевременного выявления подобныхотклонений.
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Уровень оповещений (Alert Level)
На построенных графиках отображается Alert Level для каждогопараметра.

Рисунок 12. Уровень оповещений (крутящий момент)

Рисунок 13. Уровень оповещений (давление в нагнетательной линии)
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Рисунок 14. Уровень оповещений (вес на крюке)
5.6. Stuck Risk
Для оценки риска прихвата использован анализ Alert Level по параметрамHook Load, Standpipe Pressure и Torque.
На построенном графике отображен итоговый профиль риска прихвата свременной привязкой. Были выделены три зоны риска:

 зона нормальных условий — риск менее 35 % (зеленый фон);
 зона неоптимальных условий — риск от 35 % до 50 % (желтый фон);
 зона высокого риска — риск более 50 % (красный фон).

На графике можно наблюдать стабильные значения риска на протяжениибольшей части времени, что соответствует нормальным условиям работыбуровой установки. Однако ближе к концу периода фиксируется резкийрост риска, который достигает 34 %, но остается в пределах зонынормальных условий.
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Рисунок 15. График интегрального риска с зонами риска
6. Заключение
Разработанный метод показал, что интеграция физических моделейTorque & Drag и гидравлики с вычисляемыми в реальном времениметриками отклонения (DEV) и скорости изменения (ROC) позволяетформировать надежный и интерпретируемый показатель риска прихватабурильной колонны. Разработанный алгоритм Stuck Risk обеспечиваетсбалансированное соотношение чувствительности к отклонениям искорости этих отклонений, позволяя минимизировать какложноположительные, так и ложноотрицательные срабатывания.Дополнение системы модулем второго уровня на основе LSTM-автоэнкодера расширяет ее возможности, обеспечивая выявлениесложных многомерных паттернов, не захватываемых традиционнымиметодами.
Ключевым преимуществом предложенного подхода является инженернаяинтерпретируемость результатов: инженер-технолог получает не толькочисленный индекс риска, но и разложение вклада каждого параметра, чтоупрощает принятие корректирующих решений в режиме реальноговремени. Практическая апробация на реальных интервалахпродемонстрировала эффективность методики — в ряде случаевсвоевременные меры позволили избежать серьезных осложнений, аобщая точность раннего предупреждения составила около 86 %.
Внедрение описанной методики в системы цифрового супервайзингаспособно существенно повысить безопасность и экономическую
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эффективность буровых операций, снижая риск непроизводственныхпростоев и финансовых потерь. В долгосрочной перспективе подобныегибридные алгоритмы могут стать основой для создания полноценныхинтеллектуальных ассистентов оператора, работающих в режимереального времени и обеспечивающих предиктивное управлениепроцессом бурения.
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